12. Linear Transformation Quiz Answers

Answer to Matrix Addition Quiz

To find the value of the ij{ij}th element of Matrix DD , we need to calculate:

D=A+BCD=A+B-C

D=[30.6431.3408.67080.006]+[35.76450221.399000][0100966.7849900540.077.7000]D=\begin{bmatrix} 3 &0.6 &4&-3\\ -1.3 &4 &0&8.6\\7&0 &-8& 0.006\end {bmatrix}+\begin{bmatrix} 3 &-5.76 &45&0\\ 2 &-2 &1.3&9\\-9&0 &0& 0\end{bmatrix}-\begin{bmatrix} 0 &1009 &-66.7849&90\\ 0 &5 &4&-0.07\\-7.7&0 &0& 0\end{bmatrix}

We can calculate all 1212 elements of matrix DD, but it will be even easier to simply find only at the relevant elements.

let's find only the necessary elements of matrix DD:

D23D_{23} and and D31D_{31}

D23=0+1.34=2.7D_{23}=0+1.3-4=-2.7

D31=79(7.7)=5.7D_{31}=7-9-(-7.7)=5.7

Answer to Scalar Multiplication of Matrix Quiz

To find the value of the ij{ij}th element of Matrix DD , we need to calculate:

D=0.2A+(5)B2CD=0.2A+(-5)B-2C

D=0.2[30.6431.3408.67080.006]5[35.76450221.399001]2[0100966.7849900540.070000]D=0.2\begin{bmatrix} 3 &0.6 &4&-3\\ -1.3 &4 &0&8.6\\7&0 &-8& 0.006\end{bmatrix}-5\begin{bmatrix} 3 &-5.76 &45&0\\ 2 &-2 &1.3&9\\-9&0 &0& 1\end{bmatrix}-2\begin{bmatrix} 0 &1009 &-66.7849&90\\ 0 &5 &4&-0.07\\0&0 &0& 0\end{bmatrix}

Again, we can calculate all 1212 elements of matrix DD, but it will be even easier to simply find only at the relevant elements.

let's find only the necessary elements of matrix DD:

D11D_{11} and and D24D_{24}

D11=0.235320=14.4D_{11}=0.2 \cdot 3-5\cdot 3-2\cdot 0=-14.4

D24=0.28.6592(0.07)=43.14D_{24}=0.2 \cdot 8.6-5\cdot 9-2\cdot (-0.07)=-43.14

Answer to Square Matrix Multiplication Quiz

A=[312541038]A=\begin{bmatrix} 3 &1 &2\\ -5 &4 &1\\0&3&-8\end{bmatrix}

B=[051321100.54]B=\begin{bmatrix} 0 &5&-1\\ 3 &2 &-1\\10&0.5&4\end{bmatrix}

If
C=AC=A x B=[312541038]B=\begin{bmatrix} 3 &1 &2\\ -5 &4 &1\\0&3&-8\end{bmatrix}x[051321100.54]=[231842216.5571235]\begin{bmatrix} 0 &5&-1\\ 3 &2 &-1\\10&0.5&4\end{bmatrix}=\begin{bmatrix} 23 & 18 &4\\ 22 &-16.5 &5\\-71&2&-35\end{bmatrix}

Then c23=5c_{23}=5

If
C=BC=B x A=A=[051321100.54]\begin{bmatrix} 0 &5&-1\\ 3 &2 &-1\\10&0.5&4\end{bmatrix}x [312541038]=[251713181627.52411.5]\begin{bmatrix} 3 &1 &2\\ -5 &4 &1\\0&3&-8\end{bmatrix}=\begin{bmatrix} -25 & 17 &13\\ -1 &8 &16\\27.5&24&-11.5\end{bmatrix}

Then c23=16c_{23}=16

Notice that matrix multiplication is not commutative.
BB x A̸=AA\not =A x BB.

Answer to Matrix Multiplication Quiz

If: A=[0.6152598]A=\begin{bmatrix} 0.6 &-15 &2&5&98\end{bmatrix}

B=[2249140130.544194005]B=\begin{bmatrix} 2&2&-4\\ 9 &-14 &0\\13&-0.5&44\\1&9&4\\0&0&5\end{bmatrix}

C=AC=AxBB=[0.6152598]\begin{bmatrix} 0.6 &-15 &2&5&98\end{bmatrix} x[2249140130.544194005]=[102.8255.2595.6]\begin{bmatrix} 2&2&-4\\ 9 &-14 &0\\13&-0.5&44\\1&9&4\\0&0&5\end{bmatrix}= \begin{bmatrix} -102.8 &255.2 &595.6\end{bmatrix}

The result is a row vector with 3 elements. Hence the number of rows is 11 and the number of columns is 33.

The value of c13c_{13} is 595.6.

There is no valid answer to section (d) as the dimensions of BB and AA do not match.